
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 306 (2007) 564–579

www.elsevier.com/locate/jsvi
Aerodynamic noise prediction for long-span bodies

Jung H. Seo, Young J. Moon�

Department of Mechanical Engineering, Korea University, Seoul 136-701, Korea

Received 21 June 2006; received in revised form 19 May 2007; accepted 27 May 2007

Available online 24 July 2007
Abstract

A computational methodology is proposed for aerodynamic noise prediction of long-span bodies at low Mach numbers.

The three-dimensional hydrodynamic field is computed by incompressible large eddy simulation, while its two-dimensional

acoustic field at zero spanwise wavenumber is solved by the linearized perturbed compressible equations (LPCE). A far-

field acoustic pressure is obtained by extrapolating the pressure fluctuations with Kirchhoff method, followed by a three-

dimensional correction with Oberai et al.’s formula. The far-field sound pressure level for the long span is then estimated

by a correction method, which is formally derived by revisiting the previous works of Kato et al. and Perot et al., along

with discussion on finding the spanwise coherence lengths. The accuracy of the present method is assessed for broadband

noise (with a broadened tone) from a flow with ReD ¼ 4:6� 104 and M ¼ 0:21, past a circular cylinder of 30 cylinder-

diameter span. The computed aerodynamic and acoustic results are found in excellent agreement with the experimental

measurements.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A turbulent flow over the long-span body (e.g. circular cylinder, airfoil, flat plate, and forward/backward
steps) is often encountered in many aerodynamic analyses. The characteristics of the turbulent flow have
extensively been studied by direct numerical simulation (DNS) or large eddy simulation (LES) but its noise
prediction at low Mach numbers has been conducted with limited extents. At low Mach numbers, the scale
disparity between the turbulent eddies and the acoustic waves becomes so large that direct computation of the
flow and sound will be very expensive and difficult.

To overcome this problem, an alternate approach of hybrid methods has been used by several researchers;
for example, Lighthill/Curle integral formulation with compressible or incompressible LES solution [1,2] and
the linearized Euler equations (LEE) with the source terms extracted from LES solutions [3–5]. The latter is
effective but defining the source terms still remains as an open issue. Recently, Ewert and Schröder [6,7] have
proposed the acoustic perturbation equations (APE) with the compressible flow as a base solution. This
method is based on a source-term filtering technique, which intents to eliminate the vortical and entropy
modes from the compressible flow solution.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In this study, we propose a hybrid method for prediction of turbulent flow noise at low Mach numbers. This
method is based on a hydrodynamic/acoustic splitting technique [8–12], an alternative to solve the low Mach
number aeroacoustic problems. A turbulent flow is computed by incompressible LES, while the generation
and propagation of the acoustic field is predicted by the linearized perturbed compressible equations (LPCE)
[12], with the acoustic sources acquired from incompressible LES solution. This LPCE formulation ensures
consistent, grid-independent acoustic solutions by suppressing the unstable vortical mode in the perturbed
system. The present method is computationally efficient because it is based on an incompressible flow solver
and the grid systems for flow and acoustics can be treated differently.

A far-field sound pressure level (SPL) for the long span is calculated by an approximate but efficient
computational approach. The far-field acoustic pressure is obtained by extrapolating the pressure fluctuations
with Kirchhoff method [13], followed by a three-dimensional correction with Oberai et al.’s formula [14]. The
far-field SPL for the long span is then estimated by a correction method, which is formally derived by
revisiting the previous works of Kato et al. [15] and Perot et al. [2].

In the present study, the afore-mentioned computational methods are validated for broadband noise (with a
broadened tone) from a flow with ReD ¼ 4:6� 104 and M ¼ 0:21, past a circular cylinder of 30 cylinder-
diameter span. The computed aerodynamic and acoustic results are compared with the experimentally
measured data [1,16,24], along with discussion on finding the spanwise coherence lengths. In addition, a
relation is derived between the spanwise coherence function of the far-field acoustic pressure emitted from the
body surface and that of the integrated surface pressure.

In Section 2, the computational methodologies and numerical schemes are described for LES, LPCE, and
the far-field SPL prediction methods. The computed aerodynamic and acoustic results are presented in Section
3, with discussion on the accuracy of the computed spanwise coherence lengths and its sensitivity to the
amount of SPL correction for the long span.
2. Computational methodologies

2.1. Incompressible LES/LPCE hybrid method

The aerodynamic noise prediction for the long-span bodies starts with computing a low Mach number
turbulent flow by incompressible LES. This is based on the hydrodynamic/acoustic splitting method [8–12],
in which the total flow variables are decomposed into the incompressible and perturbed compressible
variables as:

rð~x; tÞ ¼ r0 þ r0ð~x; tÞ,

~uð~x; tÞ ¼ ~Uð~x; tÞ þ~u0ð~x; tÞ,

pð~x; tÞ ¼ Pð~x; tÞ þ p0ð~x; tÞ. ð1Þ

The incompressible variables represent hydrodynamic turbulent flow field, while acoustic fluctuations and
other compressibility effects are resolved by perturbed quantities denoted by ð0Þ.

The filtered incompressible Navier–Stokes equations are written as

q ~Uj

qxj

¼ 0, (2)

r0
q ~Ui

qt
þ r0

q
qxj

ð ~Ui
~UjÞ ¼ �

q ~P
qxi

þ m0
q
qxj

q ~Ui

qxj

þ
q ~Uj

qxi

� �
� r0

q
qxj

Mij , (3)

where the grid-resolved quantities are denoted by ( ~ ) and the unknown sub-grid tensor Mij is modeled as

Mij ¼ gUiUj � ~Ui
~Uj ¼ �ðCsDÞ

2
j ~Sj ~Sij. (4)

Here, D is a mean radius of the grid cell (computed as cubic root of its volume).
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After a quasi-periodic stage of hydrodynamic field is attained, the perturbed quantities are computed by the
LPCE. A set of the LPCEs is written in a vector form as:

qr0

qt
þ ð~U � rÞr0 þ r0ðr �~u

0
Þ ¼ 0 (5)

q~u0

qt
þ rð~u0 � ~UÞ þ

1

r0
rp0 ¼ 0 (6)

qp0

qt
þ ð~U � rÞp0 þ gPðr �~u0Þ þ ð~u0 � rÞP ¼ �

DP

Dt
. (7)

The left-hand side of LPCE represents effects of acoustic wave propagation and refraction in an unsteady,
inhomogeneous flow, while the right-hand side only contains an acoustic source term, which is projected from
the hydrodynamic flow solution. It is interesting to note that for low Mach number flows, the total change of
the hydrodynamic pressure, DP=Dt is considered as the only explicit noise source term.

Because a curl of the linearized perturbed momentum equations, Eq. (6) yields

q~o0

qt
¼ 0, (8)

LPCE prevents any further changes (generation, convection, and decaying) of perturbed vorticity in time. In
fact, the perturbed vorticity ð~o0 ¼ r �~u0Þ could yield self-excited errors, if ~o0 is not properly resolved with the
acoustic grid. Hence, the evolution of the perturbed vorticity is pre-suppressed in LPCE, deliberating the fact
that the perturbed vorticity has little effects on the noise generation, particularly at low Mach numbers. For
hybrid methods, this is an important property that ensures consistent, grid-independent acoustic solutions.
The LPCE has been validated for a laminar tone from a circular cylinder at ReD ¼ 150 and M ¼ 0:1 and also
for the vortex sound problems at higher Reynolds numbers, i.e. quadruple sound of Kirchhoff vortex and
temporal mixing layer noise. Details on the derivation of LPCE and the characteristics of the perturbed
vorticity can be found in Ref. [12].

The filtered incompressible Navier–Stokes equations are solved by an iterative fractional-step method, and
the LPCEs are solved in a time-marching fashion. The governing equations are spatially discretized with a
sixth-order compact scheme [18] to avoid excessive numerical dissipations and dispersions errors and
integrated in time by a four-stage Runge–Kutta method. A tenth-order spatial filtering (cut-off wavenumber,
kDx � 2:9) proposed by Gaitonde et al. [19] is also employed to enhance the numerical stability. This filtering
will be discussed more in Section 3 with the sub-grid scale (SGS) model used in LES.

2.2. Computation of far-field acoustics

In the present study, we are concerned with a low Mach number turbulent flow, which is statistically
homogeneous in the spanwise direction over the long span. In incompressible LES, a spanwise periodic
boundary condition allows to capture the spanwise-correlated flow structure with a short simulated span ðLsÞ.
In LPCE calculation, however, applying periodic boundary condition to the same spanwise width will result in
un-physically correlated acoustic result [2,7,20] because the acoustic wavelength is usually much larger than
the turbulence length scales. To avoid this matter, one must either use a very long span that fully covers the
acoustic correlation length or apply an absorbing boundary condition at the spanwise boundaries. The former
is hardly possible for any case. The latter is not possible for DNS but will be an easy task for the present
hybrid method because the spanwise boundary conditions for the flow and acoustics can be treated differently.

In this study, an approximated but computationally efficient approach is pursued. Instead of solving 3D
LPCE with absorbing boundary condition applied at the spanwise boundaries [21], a two-dimensional
acoustic field at zero spanwise wavenumber, kz ¼ 0 is calculated in the mid-span plane, with acoustic sources
and hydrodynamic variables integrated in the spanwise direction;

q̄ðx; y; tÞ ¼

Z Ls

0

qðx; y; z; tÞdz, (9)
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where Ls is the span used in 3D flow simulation. In 3D aero-acoustics, it is important to note that the strength
of the noise source is directly related to the spanwise coherence length scale of the flow. In fact, Eq. (9) has
already taken this into account for those scales resolved within Ls. The computed far-field acoustic pressure is
then corrected by the following relation. Considering an acoustic wave equation which is Fourier-transformed
in the spanwise direction, a three-dimensionally radiated far-field acoustic pressure in frequency domain, p̂0 is
related to the two-dimensionally predicted acoustic pressure at kz ¼ 0, ¯̂p0 by

p̂0ðx; y; 0;oÞ � ¯̂p0ðx; y;oÞ
1þ i

2

ffiffiffiffiffiffiffiffiffi
o

copr

r
, (10)

where co is the ambient speed of sound. Derivation of this relation proposed by Oberai et al. may be found in
Ref. [14].

At low Mach numbers, acoustic waves generated in the stream of turbulences have a range of wavelengths,
all of which are difficult to be resolved unless grids are really fine up to the far-field boundaries. If an
observer’s position is far from the noise source, an acoustic domain can be truncated and the acoustic pressure
obtained by LPCE can be extrapolated from the truncated boundaries to the far-field observer’s position by
2D Kirchhoff method [13],

4ip̂0 ¼ �

Z
S

qp̂0

qn
H ð2Þo ðor=coÞ �

o
co

ðn̂ � r̂Þp̂0H
ð2Þ
1 ðor=coÞ

� �
dS, (11)

where r is the distance from the source to the observer’s position, n̂ is a unit vector normal to the Kirchhoff
surface, and H is the Hankel function. In Eq. (11), the effect of the momentum fluctuations (Lighthill stress
tensor) is neglected because the Kirchhoff surface is usually set in the mid-field, where the momentum
fluctuations are almost negligible.
2.3. Estimation of far-field SPL for the long span

In order to estimate a SPL for the long span (L), SPL for the simulated span (Ls) must be corrected.
According to Kato et al. [15], SPL correction for the long span can be made by adding 10 logðL=LsÞ, if a
coherence length of the surface pressure fluctuations, LC is determined less than the simulated span, i.e.
LCpLs. If LC4L (i.e. for nearly planar waves), 20 logðL=LsÞ must be added. This simple correction has been
used for various studies [1,7,20,22]. Although two asymptotic values are correct, Kato’s method is rather ad
hoc, when LspLCpL. Recently, Perot et al. [2] proposed a more elaborated correction method, considering
an acoustic spanwise coherence function with the Curle’s analogy solution. This method may give a more
realistic result in the near-field because a retarded time is taken into account. But the methodology has not
been completed for practical use.

In this study, we propose a correction method, revisiting the previous works of Kato et al. [15] and Perot et
al. [2]. First, consider a long-span body, which is divided into N subsections by Ls (i.e. L ¼ NLs) because the
acoustic pressure radiated from the simulated span, Ls is the only known solution (see Fig. 1). Let the spectral
acoustic pressure radiated from the i-th subsection be p̂0i, then the power spectral density of the acoustic
pressure for entire span, p̂0L can be written as

p̂0Lp̂0L
�
¼
XN

i¼1

p̂0i

XN

j¼1

p̂0j
�
¼
XN

i¼1

XN

j¼1

Reðp̂0ip̂
0
j
�
Þ, (12)

where * denotes a conjugate.
Now, we need an assumption of ‘statistical homogeneity in the spanwise direction’ that satisfies the following

properties of simulated span, Ls.
1. The power spectral density of the acoustic pressure radiated from each subsection is the same, i.e.

jp̂01j
2 ¼ jp̂02j

2 ¼ � � � ¼ jp̂0N j
2 ¼ jp̂0sj

2, (13)

where p̂0s is the spectral acoustic pressure radiated from Ls.
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Fig. 1. Schematic of a long-span body divided by N subsections.
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2. The acoustic pressure radiated from each subsection is only lagged by a phase difference which can be
characterized by the following coherence function,

g0ij ¼
Reðp̂0ip̂

0
j
�
Þffiffiffiffiffiffiffiffiffi

jp̂0ij
2

q ffiffiffiffiffiffiffiffiffi
jp̂0jj

2
q . (14)

This function will be simply named an ‘acoustic spanwise coherence function’ from hereafter.
3. The above coherence function (phase lagging) is a function of Dzij , the spanwise separation between two

subsections:

g0ij ¼ g0ðDzijÞ; Dzij ¼ jzi � zjj ¼ ji � jjLs. (15)

In many cases, these assumptions are not so crude, if the observer’s position is sufficiently far. By employing
Eqs. (13)–(15), the power spectral density of the acoustic pressure emitted from the entire span, Eq. (12) can be
written as

jp̂0Lj
2 ¼

XN

i¼1

XN

j¼1

g0ðDzijÞjp̂
0
sj
2. (16)

So, one can now estimate jp̂0Lj
2 by determining g0ðDzijÞ. Since the phase lagging in the spanwise direction tends

to follow a Gaussian distribution [23,24], the acoustic spanwise coherence function, g0ðDzijÞ can be expressed as

g0 ðDzijÞ ¼ exp �
Dz2ij

L0cðoÞ
2

 !
, (17)

where L0cðoÞ is the spanwise coherence length, which is also a function of frequency. Note that L0cðoÞ is
different from LCðoÞ in the earlier work of Kato et al. [15].

From Eqs. (16) and (17), SPL to be corrected for the long span, L is given by

SPLcðoÞ ¼ 10 log
jp̂0LðoÞj

2

jp̂0sðoÞj
2

 !

¼ 10 log
XN

i¼1

XN

j¼1

exp �ði � jÞ2
Ls

L0cðoÞ

� �2
 ! !

. ð18Þ
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Eq. (18) is plotted in Fig. 2 (solid lines) against L0c =Ls for various Nð¼ L=LsÞ. If L0c=Lso1=
ffiffiffi
p
p
ð� 0:56Þ,

SPLcðoÞ converges to 10 logðNÞ, while SPLcðoÞ approaches to 20 logðNÞ, if L0c=Ls4N=
ffiffiffi
p
p

(or L0c4L=
ffiffiffi
p
p

).
When N is sufficiently large, SPLc is linearly proportional to logðL0c=LsÞ in the range of 1=

ffiffiffi
p
p

oL0c=LsoN=
ffiffiffi
p
p

.
Therefore, Eq. (18) can be approximated to a simpler form (dashed lines), which might be useful in engineering
purposes:

SPLc ¼

10 logðNÞ ðL0c=Lsp1=
ffiffiffi
p
p
Þ;

10 logðL0c =LsÞ þ 10 logð
ffiffiffi
p
p

NÞ ð1=
ffiffiffi
p
p

oL0c=LsoN=
ffiffiffi
p
p
Þ;

20 logðNÞ ðL0c=LsXN=
ffiffiffi
p
p
Þ:

8><>: (19)

It is interesting to note that Eq. (18) or (19) has the same asymptotic behavior as Kato’s formula and also that
Eq. (19) can be still useful for small N, as long as L0c =Ls is not too large, for example, less than 3.

As shown above, determining L0cðoÞ from the acoustic spanwise coherence function, g0ðDzijÞ is an important
step for estimating SPLcðoÞ. Actually, g0ðDzijÞ is the spanwise coherence function of the acoustic pressure
radiated from each subsection surface, whereas experimentally measuring that is hardly possible because the
acoustic far-field cannot be windowed (or sectioned) by Ls for the entire span. Alternatively, it can be
estimated by an acoustic analogy with the computed (or measured) surface pressure data [2]. The cross power
spectrum p̂0i p̂0j

�
can be evaluated with the surface pressure, using Curle’s analogy solution:

p̂0ðoÞ ’
1

4pc0

Z
ð~r � n̂Þð�ioP̂ðoÞÞ expðior=c0ÞdS. (20)

For a compact source or when observer’s position is very far, it can be assumed that r=c0 � constant. Then,
the cross power spectrum p̂0i p̂0j

�
is analytically written as

p̂0i p̂
0
j
�
’
�io expðior=c0Þ

4pc0

���� ����2 Z ð~r � n̂ÞP̂i dSi

Z
ð~r � n̂ÞP̂

�

j dSj (21)

and Eq. (14) can be expressed as

g0ðDzijÞ ’
Re

R
ð~r � n̂Þ P̂i dSi

R
ð~r � n̂ÞP̂

�

j dSj

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
R
ð~r � n̂Þ P̂i dSij

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j
R
ð~r � n̂Þ P̂j dSjj

2
q , (22)
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where P̂i is the surface pressure at each subsection and
R
dSi is the surface integral over each subsectional

area. Eq. (22) is a relation between the acoustic spanwise coherence function, g0ðDzijÞ and the spanwise
coherence function of the ‘integrated’ surface pressure. For a certain application, it is also possible to replace
g0ðDzijÞ by the spanwise coherence function of the surface pressure at a point of interest, and such a coherence
function can be easily computed or measured by experiments.
3. Results and discussion

The proposed aerodynamic noise prediction method for the long-span bodies is validated for broadband
noise (with a broadened tone) from a flow past a circular cylinder of 30 cylinder-diameter span (see Fig. 3).
The flow is at ReD ¼ 4:6� 104 and M ¼ 0:21 (a sub-critical regime), where a dipole-tone is broadened by the
spanwise instability of the shear layer emanated from the separated boundary layer at the cylinder surface.
The computed aerodynamic and acoustic results will be compared with the experimental measurements
[16,1,24], along with discussion on finding the spanwise coherence lengths.
3.1. Flow over the circular cylinder

According to Szepessy’s experiment [17], a spanwise correlation length of the cylinder cross flow is found as
2:7D at ReD ¼ 43000. So, an incompressible LES is conducted for the span, Ls ¼ 3D with flow periodicity
assumed in the spanwise direction (see Fig. 3). An O-type cylindrical grid is used with approximately 106 mesh
points: 181� 181� 31 in the circumferential, radial, and spanwise directions, respectively, and the
computational domain is divided into 16 blocks for parallel computation. The minimal grid size adjacent
to the wall is 0:005D and the time step used in the computation is 0:002tU=D, which corresponds to the CFL
number of 0.4.

In this study, two LESs were conducted with a Smagorinsky model with van Driest damping function at the
wall (Cs ¼ 0.065) and no SGS model. No significant differences were observed but at least for the global
aerodynamic quantities, i.e. Strouhal number and the mean and rms values of CD and CL, the latter yielded
somewhat better performances. This agrees with the previous study of Visbal and Rizetta [25], who have tested
the compact/filtering scheme (same spatial discretization and filtering formula used in the present study) for
the isotropic turbulence and the low Reynolds number turbulent channel flow. It has been shown that the
tenth-order spatial filtering used in the present study has a cut-off wavenumber, kDx � 2:9, which far exceeds
the test-filter width of kDx ¼ p=2 � 1:57 and therefore only damps out the scales which are un-resolved by the
sixth-order spatial differencing scheme. But the present compact/filtering scheme with the standard eddy-
viscosity SGS models dissipates energy over a wide range of wavenumbers including the resolved scales. This
problem comes from the SGS model that cannot be corrected by simply adjusting the constant in the model
Ls
L=30D

r=185D

Fig. 3. Schematic of flow-induced noise from a long circular cylinder in cross flow.
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[25]. The present LES is therefore performed with no SGS model, but finding a proper turbulence closure
model for the compact/filtering LES still remains as an open issue and will be pursued in the future study.

At ~t ¼ 100 t U=D (U: free-stream velocity), a quasi-periodic stage of the flow is established. After an
additional computation for 200 t U=D, 80 cycles of the von Karman vortex shedding were obtained. The
boundary layer at the cylinder surface remains laminar but after separation, the shear layer immediately
breaks off into smaller eddies. The iso-surfaces of the second invariant property of the velocity gradient,
Q ¼ ðOijOij � SijSijÞ=2 (Oij&Sij: rotation and strain rate tensors) are plotted in Fig. 4, where a coherent von
Karman vortex street and highly three-dimensional wake structures are clearly visualized. Fig. 5(a) shows the
time variations of the lift and drag coefficients, oscillating at Strouhal numbers ðSt ¼ fh=UÞ of 0.19 and 0.38,
respectively. The mean pressure coefficient along the cylinder surface is also compared in Fig. 5(b) with the
experimental data [16], indicating a fairly good agreement. The back pressure and the lowest peaks are slightly
Fig. 4. Three-dimensional flow structures over the circular cylinder at ReD ¼ 46000 and M ¼ 0:21; Iso-surface of Q ¼ 0:5, non-

dimensionalized by ðU1=DÞ2.
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under-predicted but the lowest peak positions seem to be well met. In Table 1, aerodynamic coefficients are
also compared with the experimental data of Szepessy and Bearman [16]. The computed Strouhal number is
found in good agreement with the experimental measurements. The drag coefficient in rms value is slightly
under-predicted but the mean drag coefficient and the rms value of the lift coefficient agree well with the
measured data. Some discrepancy may be due to the limited size of the span or issues of turbulence closure
model.

The auto-spectra of the pressure fluctuations over the cylinder surface, FAðoÞ ¼ limT!1 ð1=TÞP̂ðoÞP̂
�
ðoÞ

are plotted in Fig. 6 for various circumferential positions (y ¼ 0� corresponds to the wake line). Due to the lift
fluctuations, a maximum peak is observed at St ¼ 0:19 over the cylinder top ðy ¼ 90�Þ. At the wake line,
however, peak is at St ¼ 0:38 for the drag. One can also notice the pronounced high-frequency fluctuations of
the pressure along the cylinder rear at 0:3oSto1:2. These are attributed to the wake turbulences and will be
acting as the volume source for the noise generation. Fig. 7(a) and (b) show that FAðoÞ spectra at y ¼ 90�

are almost identical along the spanwise direction, while its spanwise phase difference, Df ¼
arctanðImðFCÞ=ReðFCÞÞ varies substantially in most of the frequencies, except at St ¼ 0:19. From these
results, a flow over the circular cylinder may be regarded as statically homogeneous in the spanwise direction.
Here, FC ¼ limT!1 ð1=TÞP̂ðo; zÞP̂

�
ðo; zþ DzÞ is the cross spectra of the surface pressure fluctuations at

y ¼ 90�.
3.2. Acoustic field computation (LPCE)

A two-dimensional LPCE computation is conducted with acoustic sources and hydrodynamic variables
spanwise-integrated at kz ¼ 0. The acoustic meshes (161� 241) are distributed in the circumferential and
radial directions over the circular domain, which is radially extended up to r ¼ 80D. In this problem, acoustic
Table 1

Aerodynamic coefficients

St CD;avg CD;rms CL;rms

Present 0.187 1.24 0.1 0.54

Experiment 0.19 1.35 0.16 0.45–0.5

St
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Fig. 6. Auto-spectra of the surface pressure fluctuations over the cylinder.
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Fig. 8. Instantaneous pressure fluctuation field over the cylinder (ReD ¼ 46000 and M ¼ 0:21).
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wavelength at the Karman vortex shedding frequency, St ¼ 0:19 is expected to be approximately 25D at
M ¼ 0:21. So, meshes are distributed such that waves at St ¼ 1:4 are to be resolved with 6–7 grid points per
acoustic wavelength at r ¼ 70D. This is a typical mesh requirement for the sixth-order spatial differencing
scheme used in the present study. A minimal acoustic grid spacing at the wall is also set five times larger than
the hydrodynamic grid ð0:025DÞ so that acoustic calculation can be conducted with the same time step used for
the incompressible LES. This is one of the advantages with the hydrodynamic/acoustic splitting method [11]
because a synchronous computation can be conducted for flow and acoustics without any time interpolation.
It is also mentioned that the spanwise-integrated incompressible LES solution is directly interpolated onto the
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acoustic grid, using a bi-linear shape function. This simple interpolation technique maintains the accuracy
because the interpolation is conducted from the fine hydrodynamic meshes to the coarse acoustic grids.

Fig. 8 shows the instantaneous pressure fluctuation field ðDp0 ¼ ðPþ p0Þ � ðPþ p0ÞÞ calculated by LPCE for the
entire acoustic domain. One can clearly see that the tonal waves are the dominant ones compared to the high-
frequency waves observed in the near field. This dipole tone is generated by the Karman vortex shedding, while the
short waves are emanated from the volume sources (i.e. wake turbulences). A time variation of the pressure
fluctuations at r ¼ 70D directly above the cylinder is presented in Fig. 9. The acoustic pressure oscillates at the
Karman vortex shedding frequency but certainly not regular as the laminar tone. The directivity pattern of Dp0rms at
r ¼ 70D shown in Fig. 10 clearly indicates a dipole but not like the laminar case (i.e. twin circles). The laminar tone
characteristics of the cylinder cross flow at ReD ¼ 200 and M ¼ 0:3 may be found in Ref. [11].
Δp
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Fig. 9. Time variation of acoustic pressure at r ¼ 70D directly above the cylinder, non-dimensionalized by r1c21.
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3.3. Far-field SPL for the long span

In experiments [1,24], a far-field sound is measured at r ¼ 185D from the circular cylinder, as shown in Fig.
3, but our computational domain of acoustics is truncated at r ¼ 80D for computational efficiency. Therefore,
acoustic pressure at r ¼ 70D (i.e. Kirchhoff surface) is extrapolated to r ¼ 185D by 2D Kirchhoff method, Eq.
(11), followed by a 3D spectral acoustic pressure correction with Oberai et al.’s formula, Eq. (10). In order to
verify the computational methods, an acoustic power spectral density (PSD) at r ¼ 185D (computed by LPCE
with Eqs. (10) and (11)) is compared in Fig. 11 with the Curle’s analogy solution. The SPL spectra look quite
similar, in overall, including the match of peak at St�0:19. Some discrepancy in the high-frequency region
(e.g. 0:3oSto1:2) is due to the fact that the volume sources in the wake are not included in the Curle’s
solution. The LPCE result clearly shows the contributions of the volume sources and also two secondary
peaks at St�0:38 and 0.56, which are clearly observed in experiment (see Fig. 14).

In order to estimate the far-field SPL of the long span ðL ¼ 30DÞ, a correction must be taken into account by
Eq. (18) (or (19)), considering the acoustic spanwise coherence function, g0ðDzijÞ. In the present study, the spanwise
coherence function is obtained by dividing the simulated span, Ls ¼ 3D into 30 smaller subsections and applying
the Curle’s analogy to each subsection (i.e. 0:1D). The calculated spanwise coherence function (symbols in Fig. 12)
is, however, only valid up to Dz ¼ Ls=2 ¼ 1:5D because the spanwise periodic boundary condition was used in the
present computation. Except at Karman vortex shedding frequency ðSt ¼ 0:19Þ, the coherence functions are
rapidly decaying, as Dz increases. So, one can easily fit them with a Gaussian function, expð�Dz2=L0c

2
Þ (solid line in

Fig. 12) and determine the coherence length, L0c for various frequencies. Around St ¼ 0:19, the coherence function
is so slowly decaying that the fitting may yield an inaccurate estimation of L0c. But its sensitivity to the SPL is found
rather weak. Discussion on the sensitivity of L0c to SPLcðoÞ will be made later in this section.

It would be also useful to replace g0ij by the spanwise coherence function of the surface pressure at a point of
interest because of its easiness in measurement [23,24]. The acoustic spanwise coherence function, g0ij is actually
related to the spanwise coherence function of the integrated surface pressure, as described in Eq. (22). In the
present problem, the integrated surface pressure will be dominated by the surface pressure fluctuations at the
cylinder top ðy ¼ 90�Þ because both the directional cosine ð~r � n̂Þ and the surface pressure fluctuations have peaks at
this position (see Figs. 3 and 6). The spanwise coherence function of the surface pressure at y ¼ 90� is defined as

Gij ¼
ReðP̂iP̂

�

j Þffiffiffiffiffiffiffiffiffiffi
jP̂ij

2

q ffiffiffiffiffiffiffiffiffiffi
jP̂jj

2
q , (23)
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Fig. 11. Power spectral density of acoustic pressure at r ¼ 185D directly above the cylinder for the span, Lsð¼ 3DÞ.
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where the subscript denotes a subsection within the span. Eq. (23) is now plotted in Fig. 13 (symbols) with the
Gaussian function fitted (solid line). At the Karman vortex shedding frequency, the spanwise coherence length
is computed as 6D, which is quite close to the measured value [23,24]. As one can see in Figs. 12 and 13, the
spanwise coherence functions, g0ij and Gij (at y ¼ 90�) look quite similar and in practice, g0ij could be replaced
by Gij at a point of interest. The coherence function, Gij is often available in the experimental measurements or
can be easily computed.

As shown in Figs. 12 and 13, Gij is not perfectly the same as g0ij because it depends on the position and is also
problem-dependent. Thereby, the spanwise coherence length determined by the surface pressure may be
different in a certain degree from that obtained by the acoustic coherence. The amount of SPL to be corrected
for the long span, SPLcðoÞ is, however, found not so sensitive to the accuracy of the computed spanwise
coherence length. The spanwise coherence lengths, L0c determined from Figs. 12 and 13 are listed in Table 2. At
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Table 2

Computed spanwise coherence lengths

St 0.06 0.19 0.38 0.76

L0cðoÞ g0 1:5D 7D 0:8D 0:4D

G 1:3D 6D 0:8D 0:2D

St

P
S

D
 (

d
B

)

1

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1.2

Fig. 14. Sound pressure level spectrum at r ¼ 185D for L ¼ 30D; �: present, �: measurement [1,24].
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St ¼ 0:76, the coherence length of the surface pressure is smaller by half than that of the acoustic
pressure because the surface pressure fluctuations at high frequencies are not strongly noticeable
at y ¼ 90� (see Fig. 3). At other frequencies, however, only small differences are observed. In most
cases, coherence lengths are smaller than Ls=

ffiffiffi
p
p
ð� 1:7DÞ and accordingly, 10ðdBÞ is added for correction.

Therefore, obtaining the precise values of L0c is not so critical at these frequencies. The frequencies
around St ¼ 0:19 (vortex shedding frequency), however, may fall into the most difficult case,
i.e. 1=

ffiffiffi
p
p

oL0c=LsoN=
ffiffiffi
p
p

. Because the spanwise coherence lengths are larger than the simulated
span, the computed spanwise coherence lengths may not be so accurate. But 	1D variations in L0c correspond
to 	1ðdBÞ in SPLc. Therefore, a reasonably estimated spanwise coherence length may suffice the case.
Additionally, in the flow with coherent vortex shedding, the coherence length scale can be fitted with an
exponentially decaying function centered at the vortex shedding frequency as L0cðoÞ�L0 expð�Ajo� o0jÞ,
where o0 is the vortex shedding frequency and L0 is the coherence length at the vortex shedding
frequency [26]. For the broadband part of the spectrum ðobo0Þ, another exponential function can be used to
fit L0c, i.e. L0cðoÞ�B expð�C � oÞ. Such fittings can make easier to evaluate SPLc with Eq. (18) or (19) for a
wide range of frequencies.

The far-field SPL for L ¼ 30D is finally estimated by Eq. (18) with the spanwise coherence lengths listed in
Table 2 (with g0ij). The acoustic pressure PSD is compared in Fig. 14 with the experimental data measured at
the Ecole Centrale de Lyon [1,24]. It is shown that the computed SPL spectrum agrees well with the
experimental data. One can clearly identify the broadened peak around the Karman vortex shedding
frequency, St ¼ 0:19 and also the secondary peaks at St ¼ 0:38 and 0.57, all of which well coincide with the
measured data. This study shows that the present computational methodology is consistent and capable of
predicting the aerodynamic noise of long-span bodies with reasonable accuracy.
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4. Conclusive remarks

A computational methodology is proposed for aerodynamic noise prediction of long-span bodies at low
Mach numbers. Accuracy of the present method is assessed for broadband noise (with a broadened tone) from
a flow with ReD ¼ 4:6� 104 and M ¼ 0:21, past a circular cylinder of 30 cylinder-diameter span. The
computed aerodynamic coefficients of the cylinder (St, CL and CD in rms and averaged values) and its far-field
SPL for the long span are found in excellent agreement with the experimental measurements, indicating that
the proposed method is consistent and accurate. It is also numerically shown that the acoustic spanwise
coherence function can be replaced by the spanwise coherence function of the surface pressure at a point of
interest and also that SPL correction for the long span is not so critically sensitive to the accuracy of the
computed spanwise coherence lengths. When 1=

ffiffiffi
p
p

oL0c=LsoN=
ffiffiffi
p
p

, for example, it is found that 	1D

variations in L0c correspond to 	1ðdBÞ in SPLcðoÞ.
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[6] R. Ewert, W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering, Journal of Computational

Physics 188 (2003) 365–398.
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